

Low Penetration Rate Cooperative V2X Traffic Surveillance System

Jérôme Härri

Organised by:

Outline

COLOMBO

- COLOMBO proposes to develop advanced traffic light control based on local and distributed floating car data (D-FCD)
 - obtained directly from vehicles
- D-FCD is provided by COLOMBO's traffic surveillance systems
 - Assumes low penetration of cooperative V2X systems
 - Fully distributed approaches
- Classify vehicles in three classes as function of traffic sensing capabilities:
 - Class A vehicles not participating to traffic surveillance
 - Class B vehicles equipped with sensors but not C2X
 - Class C vehicles equipped with C2X technologies
- Develop Traffic monitoring system from data gathering, fusion and dissemination of traffic data obtained from class B and C vehicles, assisted by infrastructure nodes

source: Car 2 Car Communication Consortium web site

Low Penetration Traffic Surveillance

COLOMBO

- Low Penetration Rate Cooperative V2X Traffic Surveillance
 - Low C2X Penetration < 3% C2X technology
 - Multiple types of GPS devices
 - C2X, smartphones
 - Rely on WiFi-Direct on smartphones
 - Drivers or pedestrian on sidewalk
 - Rely on Bluetooth devices on vehicular sensors
- Objective:
 - Traffic Volumes / Traffic Dynamics (speed) in given zones
- Approaches followed in COLOMBO WP1
 - Clustering
 - Vehicles cluster and let a cluster-head estimate the cluster dynamics
 - Data Fusion from heterogeneous traffic data
 - C2X data is fused with Smartphones and sensor data
 - C2X Message Propagation
 - Vehicles send messages and estimate the density & speed from its propagation rate

source: Volvo for C2CCC

source: Car 2 Car Communication Consortium

Virtual Sensor Approach for Cooperative Traffic Surveillance

- Virtual Sensors represent a zone where the traffic light needs traffic volumes
 - Virtual Sensors only have a 'virtual' existence from an artificial zone defining their coverage
- V2X vehicles (class C) in each zone will exchange traffic data to consolidate traffic volumes
- Consolidated volumes are transmitted to the RSU (direct, multi-hop)
 - Dissemination is transparent to RSU
- Low V2X penetration is compensated by Smartphones held by drivers and pedestrians in same zones

10th ITS EUROPEAN

Helsinki, Finland | 16-19 June 2014

Traffic Surveillance for Traffic Light Control

- The COLOMBO Traffic Light Control (TLC) requires dynamic and fresh traffic states
 - Arriving flows
 - Leaving flows

- Measuring Zones
 - Z_x measured zones $[p_x-1-p_x]$, $[d_x-1; d_x]$
 - d_x measuring distances before TLC
 - p_x measuring distances after TLC
- Traffic Dynamics
 - Average speed in Z_x
 - Average Density of cars in Z_x

Data Quality –

- <u>Precision</u>: how close is data from reality?
- <u>Freshness</u>: how often is data provided?

Traffic state estimate through traffic fundamental diagrams

Traffic flows follow three basic fundamental diagrams:

- Traditionally used to validate models and traffic
 - Can be used to extract one component out of 1-2 two others
- Given a known street capacity (# lanes)
 - Speed can be extracted from traffic density
 - Flow (out) can be extracted from traffic density
- One challenge:
 - traffic density...

Traffic state estimate through data dissemination

- Related objective:
 - Given vehicular density
 - What is the multi-hop C2X dissemination delay?

- In COLOMBO: reverting the question
 - Given the C2X dissemination delay, what is the average density?
- Tradeoff:
 - <u>Carry</u>: dissemination = vehicular speed
 - Relay: dissemination immediate = Multi-hop percolation exists
 - Laws of Physics: at least 1 vehicle every transmit range
 - Density of vehicle may be estimated!
 - <u>Hybrid</u>: carry takes lead over relay

Traffic state estimate through local neighborhood information

COLOMBO

- Reactive Approach Distributed Auction
 - Each node request (broadcast) to be come a cluster leader
 - The node with the maximum request announces it becomes leader
 - Any node receiving this message joint its group

Proactive Approach: Node Mapping Protocol (NMP)

- periodically send beacons with information from neighbors (id, position, speed, direction, and number of known nodes)
- The node with larger neighbor set becomes leader

Cluster Leader:

- Gathers the number of neighbors contained in the measured area
- Fuse and consolidate from missed data
- Transmit it to the traffic light

Traffic state estimate - COLOMB

• 100% Car type C: Two-way linear scenario, 100%

penetration

Traffic Density:

Black: Oracle

Red: Proactive

Observation:

Dropped packets

 ~98% precision in #detected vehicles in each direction

Packet Losses:

- Related to channel congestion
- Hinders quality of fusion protocol
- Proactive (red) creates less overall (and less critical) collisions than reactive (green)

P. Bellavista, L. Foschini, E. Zamagni, "V2X Protocols for Low-Penetration-Rate and Cooperative Traffic Estimations", to appear in the Proc. of IEEE VTC-Fall 2014, Sept. 2014, Vancouver, Canada.

Traffic state estimate through local neighborhood information

- Reverse Dissemination:
 - Car entering a zone: transmit a packet
 - Last car before leaving the zone: receives the packet

- Mapping Function f(x):
 - Given dissemination time
 - Provides a respective density
 - Mapping function is critical to obtain:
 - Linear function in free-flow
 - Exponential in congested mode

Summary

COLOMBO

- COLOMBO's cooperative & distributed traffic surveillance system has been presented
 - Tailored to traffic light control required data:
 - traffic density / traffic speed per 'virtual' sensing zone (virtual induction loops)
 - Precise & fresh data (as close as possible to reality)
- Two approaches followed:
 - Topology-based: cluster-heads extracts neighborhood visibility (density)
 - Dissemination-based: relationship between dissemination time and density
- Some initial results have been presented
 - Data quality close to benchmark (simulated mobility with SUMO)

More information is available at

http://colombo-fp7.eu/

Thank you!

